A Chaos-based Arithmetic Logic Unit and Implications for Logic Obfuscation
نویسنده
چکیده
It is no secret that modern computer systems are vulnerable to threats such as side-channel attack or reverse engineering whereby sensitive data or code could be unintentionally leaked to an adversary. It is the premise of this work that the mitigation of such security threats can be achieved by leveraging the inherent complexity of emerging chaos-based computing (computer systems built from chaotic oscillators). More specifically, this paper considers a chaosbased arithmetic logic unit which consists of many unique implementations for each possible operation. Generalizing to a chaos-based computer, a large number of implementations per operation can enable the obfuscation of critical code or data. In such a system, any two functionally equivalent operations are unique in terms of control parameters, power profiles, and so on. Furthermore, many possible implementations for each operational code can be leveraged to compile a program that is uniquely defined in terms of what the user knows–such knowledge which itself could be protected via encryption. The frequencies of the various operations are shown to approach that of a probabilistic system as the circuit is allowed to evolve in time. Further, the difficulty of a successful attack is assumed to be directly related to the number of unique op-code sets possible which is shown to grow exponentially with allowed evolution time for the proposed chaos-based arithmetic logic
منابع مشابه
Design and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology
The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...
متن کاملDesigning and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)
This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...
متن کاملBeyond first order logic: From number of structures to structure of numbers: Part II
We study the history and recent developments in nonelementarymodel theory focusing on the framework of abstractelementary classes. We discuss the role of syntax and semanticsand the motivation to generalize first order model theory to nonelementaryframeworks and illuminate the study with concrete examplesof classes of models. This second part continues to study the question of catecoricitytrans...
متن کاملA rule-based evaluation of ladder logic diagram and timed petri nets for programmable logic controllers
This paper describes an evaluation through a case study by measuring a rule-based approach, which proposed for ladder logic diagrams and Petri nets. In the beginning, programmable logic controllers were widely designed by ladder logic diagrams. When complexity and functionality of manufacturing systems increases, developing their software is becoming more difficult. Thus, Petri nets as a high l...
متن کاملUnit commitment by a fast and new analytical non-iterative method using IPPD table and “λ-logic” algorithm
Many different methods have been presented to solve unit commitment (UC) problem in literature with different advantages and disadvantages. The need for multiple runs, huge computational burden and time, and poor convergence are some of the disadvantages, where are especially considerable in large scale systems. In this paper, a new analytical and non-iterative method is presented to solve UC p...
متن کامل